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The current state of the art in computational fluid dynamics provides reasonable reacting-flow predictions and is
already used in industry to evaluate new concepts of gas turbine engines. In parallel, optimization techniques have
reached maturity and several industrial activities benefit from enhanced search algorithms. However, coupling a
physical computational fluid dynamics model with an optimization algorithm to yield a decision-making tool needs to
be undertaken with care to take advantage of the current computing power while satisfying the gas turbine industrial
constraints. Among the many delicate issues for such tools to contribute efficiently to the gas turbine industry,
combustion is probably the most challenging, and optimization algorithms are not easily applicable to such
problems. In our study, a fully encapsulated algorithm addresses the issue by making use of a new multiobjective
optimization strategy based on an iteratively enhanced metamodel (kriging) coupled to a design-of-experiments
method and a fully parallel three-dimensional computational fluid dynamics solver to model turbulent reacting
flows. With this approach, the computer cost needed for thousands of computational fluid dynamics computations is
greatly reduced while ensuring an automatic error reduction of the approximated response function. Preliminary
assessments of the search algorithm against simple analytical test functions prove the strategy to be efficient and
robust. Application to a three-dimensional industrial aeronautical combustion chamber demonstrates the approach
to be feasible with currently available computing power. One result of the optimization is that possible design changes
can improve performance and durability of the studied engine. With the advent of massively parallel architectures,
the intersection between these two advanced techniques seems a logical path to yield fully automated decision-

making tools for the design of gas turbine engines.

Nomenclature

f(X) = objective function of optimization parameters X

f(X) = approximation of f(X)

fu = merit function

y, = air mass flow entering the primary zone

P = pressure

P, = airflow split between the swirler and the
multiperforated plates

P = airflow split between external and internal
multiperforated plates

P, = position of primary jets

Pry = stator thermal stress criterion

(0] = mass flow rate

N = surface

T = temperature

14 = velocity

V., = volume of the primary zone

X = set of optimization parameters

X* = global optimum parameters

N, = combustion efficiency

0 = parameter of the combustion efficiency

P = flow density

0 = parameter of the merit function

o = porosity of multiperforated plates
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67(X) = variance of the approximation f X)
o = criterion of spatial homogeneity of samples in a
design space

Subscripts

MP = multiperforation value
T = swirler value

3 = compressor value

4 = plane 4 value
Superscripts

a = dimensionless value
b = Dbaseline value

e = external value

i = internal value

ref = reference value

1. Introduction

YSTEMATIC use of optimization for gas turbine combustion

chambers is usually limited due to the substantial computing
power required by such applications. Furthermore, global
optimization strategy remains beyond today’s limits, and well-
tuned, targeted search methods (based on know-how) in a restrained
design space are the only viable options. Despite these constraints,
numerous domains have seen the advent of fully automated decision-
making tools to help the design of new devices. In fluid mechanics,
contributions remain quite limited because of the difficulty in
obtaining accurate flow estimates and the need for highly-computer-
demanding algorithms. Flow predictions in real applications are
usually obtained by computational fluid dynamics (CFD), which
necessitate the numerical solution of spatially and temporally
dependent partial differential equations. The resolution of this
system of equations usually takes 4-5 h on modern supercomputers.
That nonnegligible computational effort accentuates the need for
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intensive computing facilities, especially if optimization is targeted.
It also underlines the necessity for very efficient search procedures
such as gradient methods using adjoint CFD solvers [1]. Availability
of the adjoint CFD solver partly explains why CFD-based
optimization is mostly developed for purely aerodynamic problems
[2,3], in which the maturity of the CFD codes allows access to the
adjoint solvers. Recent applications of such optimization tools to 3-D
aerodynamic problems have been realized [4-7] with success.

A direct application of aerodynamic-oriented techniques to fully
turbulent reacting flows is not trivial. Indeed, the extended physics
implied by turbulent reacting flows involve strong couplings
between combustion, mixing, and flow dynamics, which makes the
development of CFD adjoint solvers a difficult task. Gradient
estimations can still be obtained by finite difference techniques.
However, this approach is known to be sensitive to the noise
generated by the numerical solution of the system, the grid
management, and all the various transformations introduced by the
optimization process [8]. Direct deterministic search methods [9] are
therefore preferred. The primary reasons are their reliability, ease of
implementation, and applicability to nonlinear and nondifferentiable
problems, for which they yield good results when sophisticated
approaches fail [10]. These methods are also easy first choices before
going into the development of more complex approaches. They are
also available in most optimization tools (i.e., Nimrod/O [11,12],
DAKOTA [13], CONDOR [14], OPT + + [15], iSIGHT [16], and
Optimus [17]).

In the context of optimization, algorithm design is faced with two
conflicting criteria. Exploration indicates the capability of a method
to search global interesting configurations over the whole design
space. In contrast, exploitation indicates the capability of using
already known information to rapidly converge to a local optimum.
Among the deterministic approaches, zero-order models are usually
limited to local searches while performing an efficient exploitation of
the available data to converge rapidly to an optimum in the
neighborhood of the starting point. Exploration remains critical if a
global optimum is targeted. Stochastic processes are usually
introduced to extend the local search by random identification of
several initial search points [18]. Genetic algorithms are the most
commonly used stochastic methods [8,19-21]. Finally, the coupling
of efficient gradient approaches with stochastic methods would
ensure efficient local and global searches [22].

As pointed out initially, the most important constraint for the
development of CFD-based optimization tools is the limitation on
CPU resources: the tool should provide an acceptable response time,
even with CPU-demanding applications, while respecting industrial
constraints. For example, the N3S-Natur CFD code needs
approximately four wall-clock hours to provide a flowfield estimate
in a single-sector helicopter combustion chamber. For that specific
reason and because most of the cited optimization methods require
multiple evaluations of the objective functions, a reduced-fidelity
model [23] is introduced to limit the number of expensive CFD runs.
The primary idea with this approach is to model the optimization
function by an estimate based on a limited number of expensive CFD
evaluations, thereby decreasing the overall CPU effort and elapsed
time. With the algorithm developed in this work and in contrast to
conventional approaches, the response surface model is iteratively
improved to limit the errors introduced with the estimate. The
enhancement of the database on which the approximation is based is
obtained through automatic requests for new CFD-based
evaluations, which thus provide a set of considered exact values of
the response function. Note that the new method has the advantage of
not requiring any CFD adjoint solver and is directly applicable to
turbulent reacting-flow configurations, as targeted in this work.
Similar simpler kriging-based strategies are adopted by other
researchers [24] and prove to be quite successful in their own areas of
application.

When faced with industrial problems, engineers have to deal with
multiobjective optimization [25], and the most appropriate approach
consists of providing Pareto optima to ease decision-making [26—
29]. For those types of optimization problems, access to the optimal
solutions is of greatest interest to the designer. However, it should not

prevent identifying the tendencies and dependencies of the design to
critical parameters that are valuable information for future
developments. The design of experiments (DOE) in that case is
mandatory to efficiently sample the design space [30,31] and provide
efficient analyses of the data [32]. With the approach presented, that
specificity is automatically addressed, because the fully automated
decision-making tool is essentially dedicated to the improvement of
the DOE. Indeed, a DOE is used to construct the estimator (kriging)
that gives access to a local uncertainty on the estimate. This
uncertainty is thus optimized by locally refining the DOE with new
CFD evaluations.

The document is organized as follows. Specific issues pertaining
to the tool automation, the code management, and the optimization
algorithm are detailed in Secs. ILA-IL.C and III, respectively.
Verifications and illustration of the impact of the relevant
optimization parameters are presented and discussed in Sec. [V.A.
Finally, an application to a 3-D single sector of a real combustion
chamber (Sec. IV.B) is analyzed to illustrate the applicability of the
procedure to an industrial case. It results from the demonstration that
new design points can be proposed to improve performance and
durability of the studied engine.

II. Parameterization of CFD
and Optimization Algorithms

Optimization requires the definition of control parameters
determining the search space over which the studied configuration
has to be improved. In the aeronautical context, the set of design
parameters is very large and cannot be used as a whole. For
simplicity, only geometrical and inflow conditions are chosen as
possible optimization criteria. That is, a given combustion chamber
is improved by acting on a limited set of parameters and is not totally
designed from scratch. The user defines cost functions on the search
space to assess the quality of a given design in that space. All the state
variables and the functions are evaluated from CFD runs. In practice,
the steps needed for the preparation of a CFD run are linked to the
mathematical formulation of a fluid mechanics problem: defining the
flow domain, enforcing the initial and boundary conditions, and
evaluating the solution for the given set of model equations. A CFD
run is hence decomposed in three phases:

1) Preprocessing includes automatic mesh generation when shape
optimization is concerned, initialization of the physical fields, and
determination of the boundary conditions.

2) CFD computation gives the solution of the turbulent reacting
model equations.

3) Postprocessing is the automatic analysis of the CFD predictions
for evaluation of the designs and optimization.

The integration of CFD in an automatic strategy for an
optimization tool requires encapsulating these three steps in an
efficient and robust package with limited user inputs. Some elements
concerning the pre- and postprocessing phases are given
subsequently. Particularities related to the optimization itself are
detailed in Sec. III.

The turbulent reacting CFD code used to provide the flow
prediction of the aeronautical combustion chambers is N3S-Natur. It
is based on a Reynolds-averaged Navier—Stokes approach and
determines the mean stationary flow features for two-phase turbulent
reacting flows in complex geometries using tetrahedral grids. Details
on the turbulent closures, the turbulent combustion models, and the
two-phase flow solver are available in [33]. For our work, the
following options are used: an implicit solver based on a Gauss—
Siedel inversion (first order in time with local time-stepping) with a
MUSCL second-order spatial scheme making use of a van Leer
limiter. The turbulence model is the standard k-e¢ closure. The
turbulent combustion closure is the combustion-limited-by-
equilibrium model [34,35]. If dealing with two-phase reacting
flows, as encountered for the real burner application, a Lagrangian
model is activated and coupled to the CFD solver. Convergence of
the CFD solver is based on flux balances for mass, total enthalpy, and
kinetic energy. The CFD solution is thus obtained when all flux
balance estimates reach values strictly below 1% of the previous
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estimate. That stop criterion is used for all of our computations unless
specified otherwise. Evaluations of the impact on the optimization
predictions of that specific criterion were assessed and found to be
weak as long as all balances were below that critical value. Validation
and verification of the CFD code can be found in [34,35].

A. CFD Preprocessing

With the initial combustion chamber design being provided, the
computational-domain description is assumed to be available
through the computer-aided-design parameterization [36-40].
Therefore, automation of the initial and subsequent computational
meshes is not addressed in detail. Only mesh quality is discussed
because it is known to be a critical point when solving partial
differential equations using numerical methods [41]. Indeed, great
care must be taken to generate a computational grid that ensures
meaningful CFD predictions. In the context of geometrical
optimization, which involves transformations of an initial computa-
tional domain, two methods have been implemented and tested. The
first one, generally named the moving-mesh technique [42-45],
consists of updating an existing discretization to meet the new set of
geometrical parameters. It simply means adjusting the initial grid
node positions to fit the new design. Although this method is rather
simple to implement, it is limited to small control-parameter
variations to guarantee acceptable mesh qualities. The second
technique aims at fully or partially regenerating a new grid for the
new given set of geometrical parameters. Once the geometrical
parameterization and regeneration processes are well controlled, this
method offers numerous possibilities to produce good-quality grids,
even for complex configurations [46—48]. For the present work, the
full regeneration technique is preferred.

The initialization of the physical fields for a given computational
domain is also of practical importance. It has a great influence on the
time taken by the CFD computation to reach convergence (the only
time when the prediction is meaningful and can be postprocessed).
For our approach, interpolations based on first-order spatial Taylor
developments are used to project the baseline fields on the new grids.
Finally, and for most problems, adjustment of the boundary
conditions to meet the specified control parameters is trivial.

B. CFD Postprocessing

Postprocessing steps are of two types in our optimization process.
First, it is used to verify the flow prediction provided by the CFD
code (i.e., to discriminate unphysical solutions potentially obtained
with the CFD solver). These verifications are performed through the
evaluation of several mass and energy balances as well as analyses of
extreme physical quantities. Second, once verified, the CFD results
are processed to evaluate cost functions for the given values of the
control parameters. For the specific problems addressed here, these

objective-function values are computed using local, planar, and/or
volumetric diagnostics which are easily obtained by manipulation of
the CFD prediction and its computational grid.

C. Management of the Integrated Optimization Platform

The fully encapsulated tool is composed of two main components:
a) the optimizer and b) the CFD sequences which seek a prediction/
approximation of the turbulent reacting flow. Both components are
themselves divided in fundamental sequences corresponding to
mathematical or geometrical operations and which often rely on
specific computer codes. The first consequence of that multicode
environment is the need for an efficient management technique of all
the components (some of which are parallelized) as well as the
execution of some of the components themselves in parallel. At the
same level of importance, one notes the need for an efficient
management of the data transfers between elements to ensure a
robust and flexible tool. The use of a coupling device is retained to
satisfy, at best, all of these prerequisites. The dynamic parallel code
coupler PALM [49] offers such capabilities and the optimization
platform which results from the present developments is based on
this device. Within PALM, the application is decomposed in
independent units allowing nonhierarchical coding: the different
units can be launched competitively or successively according to the
general algorithm and units exchange data by parallel MPI protocols
(Fig. 1). The optimization application, called MIPTO (Management
of an Integrated Platform for Automatic Optimization), directly
inherits from these capabilities and takes advantage of high-
performance computing (HPC) through the use of parallel units (i.e.,
parallel CFD codes) and simultaneous tasks (i.e., simultaneous CFD
evaluations) management. The efficient CPU management with a
device such as PALM also justifies the optimization methods as
detailed subsequently. Note that no disk access is necessary as
dynamic addressing is fully managed for data transfer between
codes/units. If remeshing techniques necessitate a commercial
software (i.e., GAMBIT [50] in the coming example), MIPTO is able
to send requests to check for license availability. That software may
be accessed on a distant server if not available where the application
is operating. Details about the developed and implemented methods
in MIPTO can be found in [51].

III. Optimization Process

The optimization methodology is constructed to do the following:

1) Provide relationships between control variables and objective
functions (mean tendencies, relative importance of optimization
parameters).

2) Inform about local and global optima for each objective
function.

-

Control
Parameters

Optimization

Algorithm

Objective function
Values

Linux Workstation

Licenses GAMBIT

u Installation on Massively Parallel Architectures y

Fig. 1 Schematic representation of the optimization environment tool design with PALM.
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3) Detect the conflicts between cost functions by identifying
Pareto fronts [52].

The core of the procedure is based on the construction of an
approximate model or metamodel [23] (MM) for each objective
function. The principal advantage of such MMs is to limit the number
of computations involving full 3-D CFD evaluations that are known
to be very computer-intensive and time-consuming. The sample
databases (DBs) used to compute the MMs are initially constructed
from a finite set of CFD runs chosen by a Latin hypercube sampling
(LHS) algorithm [53]. The DBs are then iteratively enhanced by
adding new samples evaluated by new CFD computations. These
evaluations are chosen by parametric operators that give more or less
importance to exploration and exploitation. These new samples are
chosen based on the uncertainty information contained in the MMs
and aim at reducing the uncertainty of the next MMs.

A. Kriging Estimators as Metamodels

In the context of optimization, a wide variety of surrogate models
are used in the literature to approximate expensive evaluations of
fitness functions. The most prominent methods among all
approaches are polynomial models [54], artificial neural networks
[55], radial basis function networks [56] and Gaussian processes
(GPs) [57]. Among these empirical models, GPs appear to be the
most promising for fitness function approximations. Indeed, GPs
combine the following decisive properties and were successively
applied for combustion problems [24,58]:

1) The implementation of GPs is independent of the number of
decision variables.

2) GPs can accurately approximate arbitrary functions including
multimodalities and discontinuities.

3) GPs contain meaningful hyperparameters (HPs) that can be
obtained theoretically with an optimization procedure.

4) GPs yield an uncertainty measure of the predicted value in the
form of a standard deviation.

Two MMs are available in the developed tool. The first one draws
inspiration from ordinary kriging [59]. The second one aims at
enhancing the behavior of the estimator when faced with noisy
functions or badly sampled DBs [60]. Both MMs learn their specific
HPs according to the current DBs and yield an estimator f (X) of the
true function f(X) as well as the standard deviation 6,(X) of the
predictor for the design point X.

B. Metamodels’ Enhancement Operators

For each iteration of the method, the enhancement of the DBs are
based on two operators:

1) For each objective i, a search of local optima is performed for
the merit function fi, defined by

Fir(X) = F(X) + 064, (X) (1)

where o is a negative user defined parameter. The value of this
parameter controls the conflict between exploration and exploitation.
When o tends to 0, the exploitation is fostered. As o decreases, more
attention is given to exploration. The local optima are obtained
through the use of a multistart strategy [51] of a gradient algorithm
[61].

2) The second operator acts in the case of multiobjective studies. It
selects the points that belong to the Pareto front, obtained from the
MMs with the genetic algorithm NSGA-II [62,63], and which have
the highest values of 6, (X). The operator then aims at improving the
precision of the predicted Pareto front.

The two enhancement operators propose a set of new sample
points to be evaluated using the CFD solver. To optimize the use of
computational resources (if the number of new samples is not
proportional to the number of simultaneous evaluations), a third
party can add other samples based on crossover genetic-type
operations [64]. It is important to underline that for certain sets of
control parameters, the CFD solver may not find acceptable
solutions. For these points and to avoid penalization of the merit
function, the value of 6, (X) at these locations is suppressed if no

Constructions

cement
Operators

Criteria

Observations

Fig. 2 Flowchart of the proposed strategy to construct the database
used to generate the MMs.

information about the objective function is provided (failed CFD)
[65.66].

The global algorithm is presented in Fig. 2. The initial DBs
(depicted by the label “Observations” in the figure) is obtained
by a DOE method. Optimal (in the sense of orthogonality and
dispersion [67,68]) LHS is generally used for this initialization
phase. The stopping criteria for that sequence are the total number of
CFD evaluations, the number of new samples obtained by the
operators or the overall precision of the MMs. The two steps referred
to as “Observations and New Observations” in Fig. 2 consist of
evaluating independent sets of design parameters. Consequently and
depending on the available computing resources, the different
evaluations can be done simultaneously. This feature aims at
reducing the overall response time of the method while benefiting
from HPC.

IV. Algorithm Verification and Application to a Real
Combustion Chamber
A. Methodology Verification and Assessment

To verify the behavior of the implemented optimization method, a
simple analytical cost function for a single optimization parameter is
considered. For this test and to mimic nonconverged or failed CFD
computations, the design space contains a nondefinition zone (NDZ)
in which the evaluation of the control parameter is not possible
[Eq. Q)I:

FX) = f(x) = —0.01(200 — (x> + 5.5x — 11)2 — (x> + x —7)?)
—[2.5exp(—(x — 1.5)?) + 1.3exp(—(x + 4)?)]
with x € [-5,-0.5]U[l, 5] (2)

The convergence criterion for which the estimator is considered to be
a good representation of the target response function is set to be the
L, norm of the difference between the analytical target and its
estimate. Convergence is in this case set to be below 1% and is kept as
such for all of the tests presented in this section. The convergence
history of the algorithm is presented in Fig. 3 after the initialization
and for the 5 subsequent iterations corresponding to the enrichment
of the DBs. With the chosen input parameter, o = —10, the merit
function converges to the estimator in only 4 iterations. The
treatment of the NDZ does not disturb the method which yields final
DBs composed of samples that cover the decision space with more
concentrations at local and global optima.

As already mentioned, the choice of ¢ has a great impact on the
results provided by the method. To more precisely analyze this
impact, we consider the analytical multimodal objective function
presented in Fig. 4 and given in Eq. (3):
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Fig. 3 Verification of the metamodel generation for an analytical case with a NDZ. Successive iterations of the database enrichment: evolution of the

merit function, f;,(X), and the metamodel, f (X), at the successive iterates.

FX) = f(x.y) ==0.1(x + 4)* = 3(1 —x)*exp(—x* — (y + 1))
+ exp(w) + lO(g —x— y5) exp(—x? —y?)

3
with X €[~2,2]x[~2.5,2.5] 3)

The experiment aims at observing the convergence rate toward the
global optimum (denoted by X* in Fig. 4) along with the evolution of
the spatial homogeneity of the samples probed in the design space.
The last quantity is evidenced by @4 [68]:

22

X'eDB X/eDBX/#X'

S 1/p
®4(DB) = |: d(X‘,X-’)‘ﬁ] “4)

where d(X', X7) is a measure of the distance separating the points X’
and X/ over the design space.

The precision of the MM which represents the analytical function
is also gauged through the parameter rmse (root-mean-square error
[69]) evaluated with an external test database DB” composed of 50

samples:

25
2

15

-15
-2
B 45 4 05 o0 05 1 15 2
X
Fig. 4 Two-dimensional multimodal analytical function to be

estimated by the MM and for which the convergence impact of the
MM parameterization is investigated. The coordinates of the global
optimum are X* = (0.0532, 1.5912).

1/2
> X —f(xnﬂ )

XeDB”

1
e = [size(DBT)

The accuracy of the response surface provided by the MM is
assessed in Fig. 5a at each iteration and by comparing X ;,, the set of
optimization parameters that lead to the minimum objective-function
value from the current DBs, with X*. The behavior shows
convergence of the method to the global optimum X* in the design
space and in the objective-function space (Fig. 5b). Clearly, small |o|
values yield faster convergence of the method toward X* (emphasis
on the exploitation concept). The drawback of a fast convergence to
X* isillustrated in Fig. 6. For small values of |g|, the linear increase of
@y goes along with a size increase of the current DBs and a
homogeneous enhancement of the DBs in the design space. As
expected, large values of |o| lead to a homogeneous exploration of
the research space. In contrast, small values tend to a fast decrease of
the exploration performances. The case ¢ = —4 shows the typical
behavior of the method: at the early stage of the enhancement, 6, (X)

is rather large when compared with f ;(X). Tt produces a
homogeneous sampling of the search space. At latter stages,
6, (X) decreases (the predictor becomes better throughout the design
space) and the merit function converges to the predictor. The
enhancement essentially focuses on new samples located around
local optima that degrade the overall homogeneity of the sample
distribution (drastic increase of ®p).

Based on the previous set of tests, homogeneity in the search space
has a direct consequence on the precision of the MM in the design
space: if there are too many samples in a reduced region of the design
space, the rmse quality measure is degraded (rmse tends to 1). For
multiobjective optimization processes, homogeneity is preferred and
o is set to a fixed value equal to —10 in the following example.

B. Application to a Real Combustion Chamber
1. Description of the Target Configuration

In this section, an application of MIPTO is presented for a
Turbomeca combustion chamber (Fig. 7). The supplied CFD
computational domain corresponds to one single sector of the fully
annular flame tube. Details about the boundary conditions (location
and type) as initially supplied are presented in Fig. 8a. The meshes
used for this application are unstructured and contain a mean of
210,000 nodes and 1,130,000 tetrahedral cells. The planes used to
analyze the CFD predictions as well as illustrations of the turbulent
reacting flow within the chamber are presented in Fig. 8b. Note that
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Fig. 7 Industrial configuration targeted for the optimization.

plane 4 coincides here with the location of the distributor, which is a
critical element of the engine. Indeed, the distributor is subject to
large thermal stresses due to the temporal and azimuthal temperature
variations induced by combustion taking place in the primary zone of

the combustion chamber (region delimited by the primary jets as well
as the swirled injector). One aim of the current application is to
reduce that thermal stress, hence improving the design of the given
chamber for a given operating point.
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Fig. 8 CFD initial model retained for the analysis by the optimization algorithm: a) CFD computational model and its boundary conditions and

b) planes used for the CFD diagnostics and analyses.

2. Presentation of the Baseline Configuration

Figure 9 presents the dimensionless aerodynamic and combustion
fields of the reference design. Most of the aerodynamic activity
concentrates in the primary zone of the combustion chamber. In this
region, a large recirculation zone located after the air injector
characterizes the flow. The external primary jets bring air within the
primary zone to ease combustion. The effect of the internal jets on
that part of the chamber is not so clear. Flow streamlines in plane 1 of
the chamber show an important recirculation zone located after the
external primary jets. Note that the recirculating gases of the primary
zone lead to fast evaporation and mixing of the liquid fuel injected
through the swirler. Combustion, visualized through the reaction rate
(Fig. 9d), takes place in the vicinity of the swirler. Fuel that is not
burned in the primary zone is consumed near air-admission orifices,
mostly in the neighborhood of the external primary jets. Finally,
temperature maps (nondimensionalized by the fresh air temperature
T;) in plane 1 (Fig. 9e) and plane 2 (Fig. 10a) underline the
trajectories of hot gases when leaving the primary zones.

3. Definition of the Optimization Problem

The considered optimization process deals with two conflicting
objectives. The first one consists of maximizing the combustion
efficiency 7,.. Following Lefebvre [70], combustion efficiency for
the studied system can be expressed in terms of a parameter denoted
by 6 and defined by

6)

ne = £(6) = f(m)

a

where P; and T; are the pressure and the temperature of the air
supplied by the compressor, 1, is the air mass flow entering the
primary zone of the flame tube, and V. is its volume. The
maximization of V,. (or the minimization of the inverse of #) leads to a
maximization of the combustion efficiency.

The second objective deals with the thermal stress imposed by the
hot gases impacting the distributor (Fig. 11). A relevant measure of
this stress is the profile factor at the stator location [70] Pr}, given by

Pr;. _ max(;l(r);‘ T4 (7)

4— 13
where T, is the mean exit chamber temperature, and max(74(r)) is
the maximum value of the exit radial temperature, illustrated in
Fig. 11. Note that minimizing the profile factor increases life
expectancy of the stator and the engine.

The control parameters used to minimize the objective functions
(Pr}, 07") are of two kinds:

1) With the geometric parameter, the relative distance from the
swirler location to the external and internal jets is noted as P ,;. Note
that the axial distance that separates the external and internal jets is
kept constant.
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e)

Fig. 9 Reference configuration flowfield as obtained with CFD in plane 1 (cf. Fig. 8b): a) velocity streamlines, b) velocity magnitude, c) fuel/air ratio,
d) reaction rate, and e) temperature map divided by 7.
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b)
Fig. 10 Reference configuration: temperature field divided by 75 as

obtained by CFD: a) in plane 2 and b) at the exit plane of the combustion
chamber.

2) With the flow-conditions parameter, the total air mass flow is
kept constant. Only the airflow split between the internal and external
multiperforated plates and the swirler are changed (i.e., P,,, and Py,
respectively).

Figure 12 illustrates the optimization parameters. In the following,
the superscript b corresponds to the baseline configuration. To keep a
constant total air mass flow rate entering the flame tube, which
ensures the reference operating point, constraints need to be defined
on the optimization problem. For our test, the total amount of air
flowing through the multiperforated plates, Qyp, and through the
swirler, Qr, are adjusted to satisfy

Or= Q?P dt 3

Dol ¢ Ppi
————>,

“«-=s-o

Qmp x (1 —Pmp)z

Fig. 12 Description of the optimization parameters and the constraints
used for the optimization process of the engine.

Owr = Otp + 05 (1 — Py) ©)
Olp = P,y (1 = Py) 0% + Obip) (10)
O%p = (1= P,,)((1 = Py) 0% + Qbip) (11)

Variations at the swirler inflow are imposed using scale similarity
(proportionality) on the velocity profiles specified at the swirler inlet
boundary condition of the CFD run. Similarly, multiperforated
inflow conditions necessitate the specification of a velocity V
proportional to the plate’s porosity o, its surface area S, and the local
flow density p:

Q= pSVo (12)
P Q{\/[P(Pdtﬂppi) ( Sig! )b 13
TSP, QP (42

o O (Pur, Py)
Se(Ppi)

e e b

" ( Seo ) a4
0Py
In the preceding expressions, the superscripts i and e, respectively,
denote the internal and external surfaces. The quantity in parenthesis
with the b superscript refers to a ratio evaluated for the original
design.
The optimization problem then looks for the optimal choices of

Ppi € [07 _Pgiax s
Py, € [P" 1], as)
Pmp c [Pmin pmax

mp s mp

min { gf{ with

4. Results of the Optimization Process

For the problem considered, one CFD evaluation for a given set of
control parameters requires approximately 168 CPU hours, which
corresponds to 6 wall-clock hours or elapsed time if using 28
processors of a IBM JS1 PowerS 1.5 GHz processor. The

(Ta(r))™e®

o P(r; 0)U (1, a)Ty(r, @)dex
:’ 2 p(r, @)U (r, a)do

TA(T‘) =

Fig. 11 Information extracted from the CFD run and quantity analyzed by the optimization process.
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Fig. 13  Scatter plots of the combustion efficiency as a function of the other parameters and obtained by CFD at the requested points in the search space.
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Fig. 14 Scatter plots of the exit-temperature profile factor as a function of the other parameters and obtained by CFD at the requested points in the

search space.

enhancement of the DBs is limited to 100 CFD computations (714
CPU days on 28 processors is 25.5 days) and the initialization of the
DBs is set to provide 30 samples (210 CPU days on 28 processors is
7.5 days). From the 100 CFD runs, the algorithm discards 14% of the
predictions (unphysical results) to construct the MMs. For confi-
dentiality reasons, the presentation of the results uses dimensionless
quantities:

Pri(P) — (Pr‘})b

e 0P — (67
@ '(P) = ey (17)

This normalization is to be interpreted with respect to the
performance of the reference design: negative values correspond to
improved criteria and positive values indicate degradation. Note also
that both objective functions depend on P = (P,,,, Py, P ;).

The analysis of the data provided by the enhancement process is
presented in two steps. The first step, inspired from sensitivity
analyses [71], aims at better understanding relationships between
control parameters and objective functions. The second step deals
with the actual search for interesting new configurations after going
through the optimization process.

When the number of control parameters or objective functions is
quite large, sensitivity measures [72,73] can guide the designer in
distinguishing which parameters are the most important. For our
application, one can directly analyze the objective-function
responses through scatter plots (Figs. 13 and 14). The combustion-
efficiency parameter 6~ is mostly dependent on the position of
primary jets P,; and, to a lesser extent, on the airflow split parameter
P,;. These behaviors are explained in light of the mathematical
expression of 6!, where V. depends on P ,; and 71, depends on P,

ma(Pdl)

6! =
Pg Vc(Ppi) exp(TS/Tref)

(18)

The objective Pr} depends on P,; and P,,. The role played by the
mass flow passing through the external and internal multiperforated

plates to feed the dilution process is not detectable by Prj. The
dependency of Pr} along the design space is not as trivial as for o1
Focusing on the P,; parameter, moving the primary jets downstream
leads to an increased volume of the primary zone, which contributes
to a more complete combustion. The major drawback is a shortened
dilution length and poorer mixing of the hot products by fresh gases.
Hence, the Pr; criterion is degraded. Looking at the effect of P,;,, one
notes that below a critical value, the excess of fuel in the primary zone
is consumed by the air provided by the primary jets. Mixing and
dilution of hot gases by these jets is no longer efficient, and the small
amount of cold air to be injected by the multiperforated plates is
insufficient. Once again, the Pr} criterion is degraded. Beyond the
critical value of P, combustion in the primary zone is increasingly
complete and the primary jets play their intended role by properly
mixing the hot gases (i.e., Pr} is improved).

Figure 15 presents the results of the optimization in the objective-
function space. The feasible domain and the Pareto front have been
determined from the MMs constructed from DBs containing 88 CFD
evaluations. Based on the position of the feasible domain in the
objective-function space, the optimization process allows for

T T T T
(U . y i
X’ @ ® % . Feasible domain
° L] ° Pareto front
-0.1 @ Baseline
Z, ® O compukation
02+ -
Id)
0.3 N
)
-0.4f b
.
0.5+ 22 C ® . °® ol
! I " | I 1 | | | 1
0 01 02 03 04 05 06 0.7 08
Pr s

f
Fig. 15 Pareto front as identified for the multiobjective optimization
along with reference configuration A and two potential candidates B and
C for an improved engine configuration.
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Table 1 Coordinates of the designs analyzed in the document

%P 1] %0 PR]  %lPp Pp]  (Pri)* (071)¢

Reference A 100 0 61 0 0
Candidate B 57 71 100 0.14 —0.39
Candidate C 0 100 100 044 —-0.52

potential improvement of the combustion efficiency and degradation
of the thermal criterion at the distributor location (plane 4). Two
separate zones are highlighted on the Pareto front. In the first one,
noted as Z;, it is possible to drastically improve the combustion
efficiency without degrading Prj too much:

7, (0*1,Pr}) € [~0.35;0] x [=0.1;0.1]

In contrast, in the second region, noted as Z,, small improvements of
0~ lead to large degradation of Pry:

Zy: (9*1, Pr;) € [-0.5; —0.4] x [0.15; 0.45]

Figure 15 also underlines the fact that in the second region of the
Pareto front, a large density of samples locates near the Pareto front.

1.0

c)

The method has found new interesting compromises during the last
iteration, and the new approximation of the Pareto front has not yet
been explored by the enhancement operators. This also highlights the
fact that the method has not yet converged to the true Pareto front of
the multiobjective problem. However, a compromise between
computational time and convergence properties of the results needs
to be set for practical applications. Despite the mentioned
shortcoming, two new design points detailed in Table 1 seem
interesting in the context of the optimization process. These potential
new designs are analyzed subsequently (Figs. 16—18). The baseline
configuration is presented in Figs. 9 and 10 for comparisons.

The first compromise is located along the Pareto front, between the
two identified zones of the response-function space. The second
design corresponds to an improved combustion efficiency and a
degraded Pr; when compared with the previous point. Figure 16
illustrates the main flow-topology differences between the two
designs, Fig. 17 concentrates on the fuel repartition and temperature
distributions, and Fig. 18 shows the exit-temperature maps. As
underlined and identified in practice when defining a new
combustion chamber [70], the flow topology is greatly influenced by
the position of the primary and dilution jets. When these jets are
moved downstream (away from the swirler), increasingly complex
flow structures coexist in the primary zone. A second consequence of

d)

Fig. 16 Flowfield visualization in plane 1 (cf. Fig. 8b) of the aerodynamic quantities obtained by CFD for the two potential candidates for an improved
engine configuration of point B (left) and point C (right), as defined in Fig. 15: a-b) velocity streamlines and c-d) velocity magnitude. For comparisons

with reference configuration A, see Fig. 9.
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Fig. 17 Flowfield visualization in plane 1 (cf. Fig. 8b) of the combustion quantities obtained by CFD for the two potential candidates for an improved
engine configuration of point B (left) and point C (right), as defined in Fig. 15: a-b) fuel/air ratio and c-d) temperature divided by T5. For comparisons

with reference configuration A, see Fig. 9.

the primary jet adjustment is the reduction in intensity of the
recirculation zone positioned behind the external jets, which is
responsible for a large part of the mixing of the hot products with
fresh gases. The reduction in size of that flow structure goes along
with the intensification of a second recirculation zone positioned
behind the internal jets and has a limited impact on mixing. Finally,
and as expected with the changes in the primary and dilution zones
inferred by the set of parameters, the new designs yield different exit-
temperature fields (Fig. 18). For the retained cases, spatial
heterogeneity of the exit-temperature fields is clearly observed when
compared with the reference case, the original design being the
optimum.

Based on the previous set of results, several rules of design can be
inferred to efficiently obtain a combustion chamber that is optimal in
term of combustion efficiency and exit-temperature profile.
Although necessary to shield the chamber walls from the hot
product of combustion, the multiperforated plates do not influence
the exit-temperature profile. For this specific objective, the leading
parameters are the jet position and the flow rate of fresh air that is
available for injection at this location. The outer jet also plays a
critical role for combustion. If not penetrating the primary zone, fuel
is burned in the mixing region of the chamber (outside the primary
zone), thereby ruining the exit-temperature profile. Combustion
efficiency essentially depends on the primary-zone volume or,

Table 2 Wall-clock time for the optimization of different computational domain of an aeronautical
gas turbine engine and as a function of the available computing power

Number of processors

16 32 64 128 256 2048 4096

Single sector flame tube, days
Single sector flame tube and its casing, days
Complete annular chamber, days

656 328 164 82 41 05 025
853 426 213 107 53 07 03
1280 640 320 160 80 10 5
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b)

Fig. 18 Temperature fields divided 7’5 at the exit of the combustion
chamber (plane 4 of Fig. 8b) obtained by CFD for the two potential
candidates for an improved engine configuration: a) configuration B and
b) configuration C.

equivalently, the outer-jet position. The aim of the designer is thus to
have the proper location of the primary jets as well as the airflow split
between the swirler and these jets. The design also needs to ensure
sufficient outer-jet penetration in the primary zone, which guarantees
complete combustion in this region while allowing proper mixing of
the hot product before exiting the chamber. All other parameters
seem to have second-order effects.

Preliminary conclusions resulting from the application of the
optimization tool to full three-dimensional multiphase reacting CFD
are as follows:

1) Optimization using MMs along with initial DBs of 30 CFD runs
proves to be feasible with available HPC power and within industrial
constraints.

2) Although convergence of the estimated cost functions is not
fully ensured after 100 CFD evaluations, the tool recovers know-how
obtained by experienced engineers on this specific chamber, as
follows:

a) Multiperforated plates have a small impact on the profile
factor at the stator location and on the combustion efficiency.

b) The primary jet axial position is of foremost importance and
increased efficiency usually results in a decreased exit-
temperature homogeneity for the configuration investigated.

A recapitulation of the computer costs involved by the use of such
an optimization tool is given in Table 2 (note that these numbers are
only obtained if the application scales ideally, which is not
guaranteed for the CFD solver, for example). Projections are added
based on the fact that current CFD codes scale almost linearly, to
further emphasize the potential impact of HPC on today’s
engineering work in the field of gas turbine engines.

V. Conclusions

Massively parallel architectures give access to huge computing
power and provide new possibilities for the development of tools to
be used for the definition of new designs of industrial products.
Among the impacted fields, the design of the aeronautical

combustion chambers still relies heavily on engineering know-how
and experience. Although turbulent reacting-flow predictions by use
of CFD applications is extensively used today by industry for the
design of the next generation of combustion chambers, the amount of
personnel effort and CPU cost required by these computations
prevent extensive design testing or improvements. In fact, and
contrary to the realm of aerodynamics, the constraints are so
important that optimization strategies using CFD codes are scarce in
the context of combustion. In this work, a preliminary demonstration
of the feasibility of a fully automated decision-making tool for
combustion chambers is provided. The adopted multiobjective
optimization strategy relies on turbulent reacting CFD runs and HPC.
To limit the impact of many evaluations of flow computations that are
CPU- and time-consuming, metamodels are introduced along with a
DOE approach. The main contribution of this work lies in the search
for optima that are obtained from a metamodel that is automatically
improved, based on new CFD computations and quality estimators
detailed earlier. Specific issues linked to the management of parallel
applications for efficient use of HPC are also addressed. Verifications
and sensitivity of the proposed strategy are presented for simple
optimization problems based on analytical expressions. To conclude,
the application of the new tool to a real gas turbine combustion
chamber proves to be feasible with available computing power and
yields manageable response time. For an industrial combustion
chamber, the aim of the optimization is to improve an existing design
in terms of engine durability and efficiency. Two potential new
candidates are proposed along with a parameter sensitivity analysis
and the identification of the Pareto front. Finally, the tool provides
design rules in agreement with the know-how gained by experienced
engineers for this type of configuration.
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